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Abstract

Theories of fission-fragment-driven re-solution of fission-gas atoms from intragranular bubbles in irradiated UO2

nuclear fuel are reviewed. Two mechanisms of re-solution are generally accepted: the heterogeneous process destroys entire
bubbles in the path of fission fragments and returns the gas to the solid as individual atoms; the homogeneous process
re-solves fission-gas atoms singly by scattering collisions with fission fragments and uranium recoils whose paths intersect
the bubbles. Coupling of these two re-solution models with the bubble nucleation analogs determines the size and number
density of the intragranular bubble population. Two approaches are reviewed: the single-size theory, in which all bubbles
are accorded one size, and the bubble distribution theory, which seeks to determine the variation of bubble number density
with size.
� 2006 Elsevier B.V. All rights reserved.
1. Introduction

There has not been a substantial review of the
important aspects of fission-gas release since the
excellent paper of White and Tucker in 1983 [1].
The present paper and the two to follow review
models of re-solution of fission-gas (fg) atoms from
bubbles and the role played by this process in
fission-gas release. Part I deals with characterizing
the population of intragranular bubbles in irradi-
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ated UO2; the second paper reviews and upgrades
the model of re-solution of intergranular bubbles.
The final paper applies the results of the preceding
papers to the calculation of an intermediate form
of fission-gas release.

A major advance in understanding the mecha-
nism(s) of fission-gas release was the discovery that
fission fragments (ffs) can drive Xe and Kr atoms
trapped in bubbles into the adjacent solid. The
demonstration was very straightforward [2]: UO2

was irradiated at low temperature, annealed out-
of-reactor at high temperature to nucleate and grow
intragranular bubbles, then returned to the reactor
for a second low-temperature irradiation. Replica
electron microscopy showed that bubbles with radii
<30 nm present at the end of annealing disappeared
under low-temperature re-irradiation. The new
mechanism was termed re-solution.
.
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Nomenclature

Symbol Definition Units Typical
value

Equation number
or reference

a Grain radius lm 5 –
A Coefficient in bubble lifetime calculation None – (23)
a Number of bubbles nucleated by a ff None 20 –
b Re-solution parameter of undefined type s�1 10�5 –
bhet Heterogeneous re-solution parameter s�1 10�5 (1)
bhom Homogeneous re-solution parameter s�1 10�7 (3), (4) and (8)
bVdW Van der Waals constant for xenon nm3 0.085 –
b Fission gas generation rate nm�3 s�1 2.5 · 10�9 –
B Coefficient in bubble radius formula nm 0.2 (9)
BU Burnup MW d/kg U 20 –
c Concentration of single fg atoms in the solid nm�3 – –
Cb Density of intragranular fg bubbles nm�3 7 · 10�4 –
Cj Density of fg bubbles with j atoms nm�3 – (34b)
CN Constant None – (43)
D Diffusion coefficient of fg in UO2 nm2/s – Ref. [23]
Deff Effective diffusion coefficient of fg nm2/s – (16c)
e2 Square of electronic charge keV nm 1.44 · 10�3 –
E Energy of recoil fg keV – –
Emin Lowest fg recoil energy for re-solution keV 0.3 Ref. [6]
Eff ff energy keV 0–7 · 104 –
Emax

ff Birth energy of ff keV 6.7 · 104

Er Energy of recoil U atom keV – (7)
EU Energy of UPKA keV – (8)
ff Fission fragment – – –
fg Fission gas atom in bubble – – –
fN Probability of stable fg dimer formation None 10�5

fS Booth-model fraction release None – (17)
_F Fission-rate density nm�3 s�1 10�8 –
/(Eff) ff flux spectrum nm�2 s�1 keV�1 2 · 10�9 (2)
G Dimensionless constant – – (A.1)
c Surface tension of UO2 N/m 0.7 –
H Dimensionless constant – – (A.4)
j Number of fg atoms in a bubble – – –
j0 Same as m0

jff Same as mff

u Dimensionless total fg atom concentration None – (A.1)
J Same as mf

k Boltzmann’s constant J/K 1.38 · 10�23 –
kD Rate constant for fg trapping by a bubble nm3/s – (15)
kN Nucleation rate constant nm3/s – (12)
m Number of gas atoms in a bubble None 15–20 –
m0 fg atoms in a bubble nucleus None 7
�m Average number of fg atoms in a bubble None 12 (27)
mf Final number of fg atoms in a bubble None 20 (22)
mff Number of atoms equivalent to Rff None 5 (20)
M Atomic mass of fg atom and ff None 135 –
lff Range of a ff in UO2 nm 6000 –

(continued on next page)

D.R. Olander, D. Wongsawaeng / Journal of Nuclear Materials 354 (2006) 94–109 95



Symbol Definition Units Typical
value

Equation number
or reference

NU Uranium atom density in UO2 nm�3 25 –
m Number of secondary fg recoils in bubble – 1 –
P Coefficient in size-space model None – (42)
qj Flux of bubbles in size space nm�3 s�1 – (39)
Rb Radius of intragranular bubble nm 1 –
Rff Radius of influence around a ff track nm 1 (1)
Rj Re-solution rate of bubbles containing j fg atoms nm�3 s�1 – (36a), (36b)
r(Ea,Eb) Cross section for projectile of energy Ea

delivering energy Eb to the target atom
nm2/keV – –

t Time since the start of irradiation s – –
t 0 Time from nucleation of bubble s
s Lifetime of an intragranular bubble s 1200 (24)
T Temperature �C or K – –
UPKA Uranium primary knock-on atom – – –
Xfg Volume of a fg atom nm3 0.03 –
z Susceptible lattice sites around a fg atom None 50–100 (12)
Z Atomic number of fg atom and ff – 54 –
f Dimensionless time None – (A.1)
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Re-solution of fission-gas from bubbles embed-
ded in the UO2 matrix takes place by one of two
mechanisms. The heterogeneous mechanism posits
complete destruction of small bubbles by ffs passing
through or nearby them. Homogeneous re-solution
occurs by removal of single fg atoms at a time by
scattering collisions with ffs or recoil O or U atoms.
The latter are energized by collisions with ffs in the
bulk solid.

Irrespective of the mechanism, this phenomenon
is characterized macroscopically by the re-solution

parameter (b), the reciprocal of which is either the
mean lifetime of a bubble (heterogeneous mecha-
nism) or the mean time that a fg atom spends in a
bubble (homogeneous mechanism). The product of
b and a quantity of fg atoms, whether in a single
bubble, on a unit area of grain boundary or in a unit
volume of fuel, is the rate of return from the gas
phase to single-atoms in the solid.

The following discussion is subject to several
restrictions.

First, the fuel is taken to be stress-free. In gen-
eral, the compressive radial stress acting on the
fission gas inside the bubble is the sum of compo-
nents due to the surface tension of UO2 and to
external compressive stress arising from gas pres-
sure in the rod or from pellet–cladding interaction.
The surface tension force is always active, but the
external stress may or may not be present. If it is,
the bubbles are smaller and denser than in a
stress-free solid.

Second, loss of gas to the grain boundaries is
neglected. This is not as severe a restriction as might
appear; at temperatures below �1100 �C, the
central portion of the grain behaves as an infinite
medium for most of the irradiation history of the
fuel.

Third, the equation of state of the fg in the bub-
bles is not treated in detail. Intragranular bubbles
are small enough (<�30 fg atoms) that the sur-
face-tension stress keeps the density near that of
solid xenon.

The paper is partitioned as follows. In Section 2,
the basic mechanisms of homogeneous and hetero-
geneous fg re-solution are reviewed. Theories of
the reverse process of bubble nucleation, also in
heterogeneous and homogeneous variants, are
reviewed in Section 3. Section 4 reviews models of
bubble behavior, which attempt to rationalize the
observed size and number density of intragranular
bubbles.

2. Re-solution mechanisms

2.1. Heterogeneous re-solution

Heterogeneous re-solution refers to en-bloc

destruction of the entire intragranular bubble by a
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passing fission fragment. The driving mechanism has
been claimed to be trapping of gas atoms in solid
blasted or vaporized from one side of the bubble to
the other [2] or pressure pulses from passing ffs [3].

Turnbull [4] proposed that all gas in a bubble
intersected by a ff is returned to the lattice as single
atoms. To be touched by a ff, the intragranular bub-
ble center must lie within a radius Rb + Rff of the
axis of the ff track. Rff is the ‘radius of influence’
of the fission track, which is estimated to be
�1 nm. The heterogeneous re-solution parameter
is determined by analogy to radiation damage in
metals. The rate of displacements-per-atom (dpa
rate) is the product of a displacement cross section
and the fast-neutron flux. In UO2 irradiated by fis-
sion fragments, the analogous rate of bubble-
destruction-per-bubble (re-solution parameter) is
the product of the bubble-ff cross section p(Rb +
Rff)2 and the ff flux 2 _F lff [5]:

bhet ¼ pðRb þ RffÞ2ð2 _F lffÞ; ð1Þ
where lff is the range of fission fragments in UO2.1

The factor of 2 in Eq. (1) reflects the two ffs per fis-
sion. For 1 nm radius bubbles in fuel with a fission
density _F ¼ 10�8 nm�3 s�1, Eq. (1) predicts bhet =
1.5 · 10�3 s�1, which is somewhat larger than the
range of values inferred from experimental data [6].

2.2. Homogeneous re-solution

Nelson [7] developed a model in which the bubble
is gradually consumed by ejection of individual fg
atoms by collisions with ffs and U recoils. Re-solu-
tion due to the former is driven by the ff flux spec-
trum [5]:

/ðEffÞ ¼ 2 _F lff=Emax
ff ; ð2Þ

where Eff is the energy of a fission fragment, which
ranges from the birth energy Emax

ff
1 down to the en-

ergy which is just sufficient to permanently re-solve
the struck fg atom.

Mathematically, the theory of homogeneous re-
solution is also analogous to that applied to the pro-
duction of point defects in metals irradiated by fast
neutrons [8]. The theoretical descriptions of both
processes fall short in assigning a minimum energy
for the event to occur. In radiation-damage theory,
the minimum energy for permanently displacing an
atom, the displacement energy, is estimated to be in
1 For the fission-product group with atomic mass of �135,
lff = 6 lm and Emax

ff ¼ 67 MeV.
the range 20–80 eV. In homogeneous re-solution
theory, the minimum energy required to drive a
gas atom out of a bubble into the surrounding solid
is simply assumed to be 300 eV. The re-solution
parameter is determined by

bhom ¼
re-solved fg atoms

fg atom-unit time

¼
Z Emax

ff

Emin

/ðEffÞdEff

Z Eff

Emin

mðEÞrðEff ;EÞdE; ð3Þ

Emin is the lowest fg recoil energy that ensures per-
manent re-solution. The differential cross section
for energy transfer from ffs to fg atoms in a bubble
is designated as r(Eff,E), where E is the energy of
the recoil fg atom.

The function m(E) represents the total number of
fg atoms that are generated in the bubble by the ini-
tial fg knockon of energy E. In an infinite medium,
this function is approximated by the Kinchin–Pease
formula, E/2Emin [9]. Since the fg atom energized by
collision with a ff can have an energy as large as
Emax

ff , and Emin is a fraction of a kilovolt, the ratio
E/2Emin can be very large. However, the range of
a high-energy fg knockon is much greater than the
nanometer or so needed to escape the bubble. Con-
sequently, Nelson ignored additional collisions and
took m = 1.

The differential energy-transfer cross section for
ff–fg collisions r(Eff,E) is assumed by Nelson to be
purely Coulombic, despite the low energies that
can be involved. Use of Eq. (2) and the Rutherford
cross section in Eq. (3) results in

bff
hom ¼ lff

_F
2pZ4e4

Emax
ff Emin

ln
Emax

ff

Emin

� �
; ð4Þ

Z = 54 is the atomic number of the fission fragment
or the fission gas atom (both are the same for the
heavy ffs) and e2 = 1.44 · 10�3 keV nm. Nelson’s
model cannot predict the minimum energy trans-
ferred to the fg atom for re-solution; Emin = 0.3 keV
is assumed.

The ratio of the homogeneous re-solution rate
given by Eq. (4) to the heterogeneous rate of Eq.
(1) is

bff
hom

bhet

¼ Z4e4

ðRb þ RffÞ2Emax
ff Emin

ln
Emax

ff

Emin

� �
ð5Þ

for Emax
ff ¼ 67 MeV, Emin = 0.3 keV and Rb = 1 nm,

the above ratio is �10�3. This massive discrepancy
arises from the very different cross sections inherent
in each model. The homogeneous description



Fig. 1. Collision chain for re-solution via uranium recoils.

98 D.R. Olander, D. Wongsawaeng / Journal of Nuclear Materials 354 (2006) 94–109
involves the microscopic Rutherford cross section;
in the heterogeneous version, the cross section is
that of an entire bubble.

Nelson [10] recognized that direct ff–fg collisions
are not the only mechanism for delivering energy to
fg atoms in a bubble. An indirect route involves the
U lattice ions as intermediate energy carriers. Fig. 1
shows the energy carriers, the functions that
describe them, and the cross sections needed to pro-
ceed down the line.

The sequence starts with the fission fragments, the
energy flux for which is given by Eq. (2). Collisions
with lattice uranium atoms are described by a Ruth-
erford cross section. The product of these collisions
are the primary U knockon atoms (UPKAs). They
are characterized by a source spectrum F(Eff,EU)-
dEff dEU, which is the number of UPKAs per unit
volume in the energy range EU, dEU generated by
collisions with ffs in the energy range Eff, dEff:

F ðEff ;EUÞ ¼ N U/ðEffÞrff–UðEff ;EUÞ; ð6Þ
where NU is the uranium atom density in UO2.

The difficult step is calculation of the U-recoil
flux spectrum from the U–U cross section and the
UPKA source spectrum. Nelson’s rather laborious
derivation leads to

/ðErÞ ¼
4

E2
r rU–U

�
Z Emax

ff

Er

/ðEffÞdEff

�
Z Eff

Er

EUrðEff ;EUÞdEU: ð7Þ

For ffs at the high-mass peak (mff ffi 135) of the yield
curve, the energy transfer efficiency factor for ff–U
or U–fg collisions (4mUmfg/(mU + mfg)2) is 0.92.
This is approximated as unity throughout this
paper. Er is the U-recoil energy and rU–U is the total
cross section for U–U collisions, which Nelson takes
as the square of the lattice parameter of the UO2

unit cell, or �0.30 nm2. Finally, the re-solution
parameter is

bU
hom ¼

Z Emax
ff

Emin

/ðErÞdEr

Z Er

Emin

mðEÞrU–fgðEr;EÞdE:

ð8Þ
The in-bubble displacement multiplication factor
m(E) is taken as unity, as in Eq. (3).

The justification is the low mass of oxygen com-
pared to the fission fragments or fission gas, which
renders energy transfer in ff–O and O–fg collisions
inefficient compared to collisions involving U. In
addition, the collision cross sections in which O
takes part are probably smaller than those involving
U.

The re-solution parameter for the indirect mech-
anism given by Eq. (8) is �40 times larger than the
direct ff–fg mechanism of Eq. (4). However, the for-
mer is still two orders of magnitude smaller than the
heterogeneous re-solution parameter of Eq. (1).
3. Nucleation and growth of intragranular bubbles

Transmission electron microscope (TEM) images
of intragranular bubbles in irradiated UO2 are
shown in Fig. 2. Salient characteristics of this bub-
ble population are its high density (�7 · 10�4 nm�3)
and the small, nearly-uniform size of the bubbles
(typically <2 nm diameter). Because of their small
size, the surface tension of UO2 is large enough to
squeeze the fg atoms (xenon) into a compressed
solid. Thomas [11] reported densities of �3 g/cm3

for bubbles with radii in the range 5–50 nm. Analo-
gous values of �5 g/cm3 for 2–4 nm radius bubbles
were given by Nogita and Une [12]. Extrapolating
these results to radii ranging from 0.5 to 2 nm gives
a density of �7 g/cm3, or an atomic volume of
Xfg � 0.03 nm3. The radius of a bubble containing
m fission-gas atoms is

Rb ¼ Bm1=3 where B ¼ ð3Xfg=4pÞ1=3 ¼ 0:2 nm:

ð9Þ
3.1. Heterogeneous nucleation

TEM observations such as that shown in
Fig. 2(a) clearly show intragranular bubbles lying
in straight lines. Turnbull concluded that they were
nucleated from the local reservoir of single gas
atoms by the passing fission fragment [4]. ffs and



Fig. 2. TEM images of intragranular bubbles.
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U recoils create displacements in the UO2 lattice,
with the vacancies tending to cluster along the
center of the track and the interstitials residing in
a shell further out [13]. The vacancy clusters provide
the nuclei of the new bubbles. Quantifying this
notion yields:

Rate of bubble nucleation per unit volume ¼ 2 _F a

ð10Þ
with a being the number of bubbles nucleated by a
single ff. Turnbull [4] deduced a value of a � 5 from
Cornell’s measurements of the number density and
radius of intragranular bubbles in irradiated speci-
mens [14]. This result is smaller than the number
observed on ff tracks (as many as 20 bubbles). Baker
counted the number of bubbles in straight lines in
the TEM images and reported a = 24 ± 1 [15].

A number of shortcomings of this simple
approach can be pointed out.

1. Not all TEM images show aligned bubbles.
Fig. 2(b) is an example containing such
observations.

2. Despite the factor of 2 in Eq. (10), not all ffs may
be capable of nucleating bubbles. The light ffs
lose a larger fraction of their energy in electronic
stopping than the heavy fragments. If the light ffs
are unable to nucleate bubbles, the value of a
deduced by Turnbull changes from 5 to 10.

3. The observed bubble tracks are only portions of
the actual track length, possibly due to the thin-
ness of the TEM samples.

4. Although the spread of observed bubble sizes is
small, there is neither a single bubble radius nor
a single bubble number density (see Section 4).

5. This model says nothing about the size of the
nucleated bubbles and relies on empirically-
determined value of the number of nucleated
bubbles per ff. It is quite possible that these quan-
tities increase with the concentration of dissolved
gas.

6. In the heterogeneous model, fission fragments
play the dual role of creator and destroyer of
intragranular bubbles. If a ff re-solves bubbles
and nucleates new ones in the same track, it is
very likely that re-solution simply produces a
very high local concentration of fg atoms from
which new bubbles nucleate. The net result is
disappearance and re-appearance of bubbles that
contain the same fg atoms.
3.2. Homogeneous nucleation

When bubbles are nucleated homogeneously
from dissolved fg atoms, the first product is a
diatomic fg–fg species (dimer). The rate of dimer
production per unit volume is

Rate of dimer production per unit volume ¼ fNkNc2;

ð11Þ

where c is the concentration of fg atoms in the solid.
The rate constant kN is given by [16].

kN ¼ zX1=3
fg D; ð12Þ

where D is the diffusivity of the fg in UO2 and X1=3
fg is

the radius of a fg atom. The constant z represents
the number of lattice sites surrounding a fg atom
which, if occupied by another fg atom, insures
dimer formation [16].

The term fN in Eq. (11) is called the ‘nucleation
factor’. It is the probability that a fg atom reaching
one of the z trapping sites actually forms a stable
dimer. Values of fN ranging from 10�7 to 10�2 have
been proposed, which makes the nucleation factor
little more than an adjustable parameter. Veshchu-
nov fits bubble data and estimates fN = 10�5–10�4

[17].
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Nucleation modeling does not end with the for-
mation of dimers. Conservation equations can be
written for trimers, tetramers, etc., all to be solved
simultaneously (see Section 4.2.1). However, in
practical fission-gas release modeling, such mathe-
matical complexity cannot be tolerated. In a drastic
simplification of the problem, intragranular bubbles
are assumed to contain a unique but time-dependent
number m of fg atoms (Section 4.1). These are
produced immediately upon creation of dimers.
Eq. (11) is modified in order to conserve fg atoms
[18]:

Rate of nucleation of fg bubbles of m atoms

¼ 1

m

� �
fNkNc2: ð13Þ

The factor 1/m in Eq. (13) is the Achilles heel of
the single-size method because it implies essentially
instantaneous growth of dimers to m-atom bubbles.
There has been no comparison of this simplified
model with more detailed nucleation theory.

3.3. Bubble growth

Following nucleation, bubbles increase in size
principally by accretion of fg atoms by diffusion.2

This is a classic problem of diffusion in spherical
geometry, resulting in the following expression for
the rate:

Rate of fg trapping by a bubble ¼ kDc; ð14Þ

where the rate constant for trapping by diffusion is
[19]:

kD ¼ 4pDRb: ð15Þ
4. The intragranular bubble population

Armed with expressions for the rates of bubble
nucleation, growth and re-solution, conservation
equations describing the evolution in time of the
intragranular bubble population can be written.
Two approaches have appeared in the literature.
The most complete theory seeks to calculate the
bubble distribution function. The more tractable
2 At high temperatures, bubbles are mobile as entities. Upon
meeting, they coalesce into a larger bubble containing the gas
atoms from the two smaller bubbles. This may be more important
for intergranular bubbles than for intragranular bubbles.
model allows only a single bubble size and a single
number density.

4.1. The ‘single-size’ method

By far the most popular is the ‘single-size’ model,
which is motivated by TEM observations showing
that the bubble radii are confined to a narrow range.
In addition to Cb and m, the concentration of
dissolved fg in the solid, c, enters either is a local
or an overall conservation equation. These three
quantities evolve as a result of the production rate
of fg atoms. The distribution of bubble sizes is not
considered; and Cb and m are assumed to represent
(undefined) average values of the distribution.

In most single-size models, loss of fg to the grain
boundaries is neglected, which is an acceptable
simplification close to the center of the grain. Alter-
natively, as shown below, a term for the accumula-
tion of fg at grain boundaries is simply attached to
the overall fission-gas balance:

bt ¼ cþ mCb þ fSðbtÞ; ð16aÞ

where b is the volumetric generation rate of stable fg
atoms, which is related to the yield of stable Xe and
Kr isotopes by

b ¼ 2Y fg
_F ffi 1

2
_F ;

t is time since the start of irradiation. fS is either zero
or an approximate fractional release to the grain
boundaries given by the Booth model:

fS ¼
4ffiffiffi
p
p

ffiffiffiffiffiffiffiffiffi
Deff t
a2

r
� 3

2

Deff t
a2

� �
: ð17Þ

In some cases the dissolved-fg diffusion equation is
used in place of, or in conjunction with, Eq. (16a):

oc=ot ¼ Deffr2cþ b: ð16bÞ

This approach introduces a spatial dependence to
the problem, and is complicated by the need to
accommodate intergranular re-solution in the boun-
dary condition at the grain surface.

Deff in Eqs. (16b) and (17) results from a simpli-
fied treatment of the effect of intragranular bubbles
on transport of fg from the grain interior to the
grain boundary. As first proposed by Speight [20],
it is

Deff ¼
b

bþ kdCb

: ð16cÞ



Table 1
Summary of ‘single-size’ intragranular bubble models

Author Single gas atom dc/dt = Atoms in bubble
dm/dt =

Bubble density
dCb/dt =

Overall
conservation
bt =

Bubble radius
Rb =

Speight [20] b � kDcCb + bmCb + D$2c kDC � bm = 0 Cb specified – –

Turnbull [4] – kDc for (0 < t0 < b�1
hetÞ 2a _F � bhetCb ¼ 0 c + mCb

3bVDV

4p

� �1=3

m1=3

Ronchi and
Matzke [21]

b � hkDcCb + fRbXfg(mCb)2 – Cb specified c + mCb + fSc
3kT
8pc

� �1=2

m1=2

h ¼ 24p
9mkT

� �1=2

Rb fS ¼ 6ffiffi
p
p

ffiffiffiffi
Dt
a2

q
� 3 Dt

a2

� �
Dollins and

Nichols [22]
b + D$2c (dm/dt)coal + kDc � bm b � kDcCb + bmCb �

�kDcCb + bmCb = 0
c + mCb

3bVDV

4p

� �1=3

m1=3

Lösönen [6] b + D$2c kDcCb � b(mCb) = 0 Cb specified –
3�0:4bVDV

4p

� �1=3

m1=3

Spino and
Rest [18]

– kDc � 1/2 bm = 0 fNkNc2 � 1/2bCb = 0 c + mCb + fSc
3�0:6bVDV

4p

� �1=3

m1=3

fS ¼ 4ffiffi
p
p

ffiffiffiffi
Dt
a2

q
� 3

2
Dt
a2

� �
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Speight’s result is reproduced in Section 15.6.1 of
Ref. [5].

4.1.1. Previous models

Table 1 gives a sampling of the ‘single-size’ anal-
yses that have appeared in the literature. Of the six
papers, four provide a single fg-atom conservation
equation. Five utilize the atoms-in-a-bubble (dm/
dt) equation, usually in a quasi-steady-state form.
Three avoid the bubble-density equation by specify-
ing Cb. Whatever the combination, only three of the
four equations in the table are independent.

Although the problem contains two or three
differential equations, most (except for dc/dt) are
treated in the quasi-steady approximation. This is
reasonable because the production and destruction
rates of the bubble number density and the number
of gas atoms in a bubble are much larger than the
time rate of change of these quantities (this is also
the basis of Eq. (16c)).

The three levels of treating fg loss to grain
boundaries appear in Table 1. Turnbull [4] ignores
loss to grain boundaries entirely; Ronchi and
Matzke [21] and Spino and Rest [18] decouple the
grain-boundary loss term from the intragranular
bubble analysis and simply include a Booth solution
in the overall fg balance.3 Three of the papers solve
3 Note that Ronchi and Matzke incorrectly use the post-
irradiation annealing solution of the fg diffusion equation instead
of the analogous solution that applies during irradiation (Eq.
(17)).
the fg diffusion equation (i.e, those with D$2c in the
single atom balance). Of these Speight’s [20] and
Dollins and Nichols’ [22] use the boundary condi-
tion c = 0 at r = a (at the grain boundary). Lösönen
[6] couples the intragranular diffusion problem to
grain-boundary re-solution.

In most of the papers (except Turnbull’s) the re-
solution parameter b is not specified as homoge-
neous or heterogeneous but is simply assigned a
value. In the analysis of Dollins and Nichols [22],
not even the value of b is given. Spino and Rest
[18] include re-solution terms in both the bubble
conservation equation and the single-bubble growth
equation, arbitrarily giving the same value to each
re-solution parameter.

Clarity of exposition is notably lacking in the
analyses of Ronchi and Matzke [21] and Dollins
and Nichols [22]. In the former, the source of several
terms in the governing equations is a mystery and in
the latter, the analysis is overwhelmed by a plethora
of extraneous symbols and equations.

4.1.2. Composite models

For the remainder of Section 4.1, two modifica-
tions of the single-size model are presented. In these
models, the distinction between heterogeneous and
homogenous processes incorporated in a model is
clarified. Most of the literature models in Table 1
(with the exception of Turnbull’s) fail to make this
distinction.

In principle, there are four possible combi-
nations:
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1. heterogeneous nucleation + heterogeneous
re-solution,

2. heterogeneous nucleation + homogeneous
re-solution,

3. homogeneous nucleation + heterogeneous
re-solution,

4. homogeneous nucleation + homogeneous
re-solution.

Nothing prevents combinations of mechanisms
from acting in one process. For example, re-solution
could occur heterogeneously if the ff energy is high
but by single-atom removal for low energy ffs. For sim-
plicity, only combinations 1 and 4 are analyzed here.

The infinite-medium assumption is adopted in
the following treatments of the intragranular bubble
population.

4.1.3. Heterogeneous nucleation and re-solution
If both production and destruction occur hetero-

geneously, the bubble number density balance,
which is assumed to be quasi-stationary, is given
by [4]:

dCb

dt
¼ 2 _F a� bhetCb ffi 0 ð18Þ

and the growth of a single bubble is described by

dm
dt0
¼ kDc ¼ 4pDcBm1=3: ð19Þ

Note the absence of a re-solution term in Eq.
(19); ffs destroy entire bubbles, so re-solution only
affects Cb.

The trapping rate constant kD in Eq. (19) is
obtained from Eq. (15) with Rb expressed in terms
of m according to Eq. (9). m depends on the growth
time of individual bubbles, t 0, which begins at the
instant that the bubble is nucleated by the first term
on the right-hand side of Eq. (18) and ends when all
fg atoms in the bubble are re-solved by the last term.
This time span is the average bubble lifetime.

The time t in Eq. (18), on the other hand, is mea-
sured from the start of irradiation and is the same
time as in Eq. (16a). The analysis must recognize
that Cb and c vary with irradiation time t. In partic-
ular, c in Eq. (19) is given by the overall fg balance
(Eq. (16a)) with m interpreted as an average value
over the span of t 0:

c ¼ bt � �mCb: ð16dÞ

The heterogeneous re-solution parameter
depends on bubble size. When applied to a single
bubble, this dependence must be explicitly treated.
For this purpose, Eq. (1) is broken up into a con-
stant and a size-dependent part:

bhet ¼ b0hetðRb þ RffÞ2

¼ b0hetB
2ðm1=3 þ m1=3

ff Þ
2 where b0het ¼ 2plff

_F ;

ð20Þ

mff is the number equivalent of the 1-nm ‘radius of
influence’ of the fission-fragment track introduced
in Section 2.1. Using Eq. (9), m1=3

ff ¼ 5.

4.1.3.1. Bubble lifetime. The lifetime of a bubble (s)
is calculated from the life-fraction rule commonly
applied in fracture mechanics [23]. In a time interval
dt 0, a fraction bhetdt 0 of the bubble’s lifetime is con-
sumed. Integrating this over a time range 0 < t 0 < s
and setting the integral equal to unity gives:

1 ¼
Z s

0

bhetdt0 ¼ b0hetB
2

Z s

0

ðm1=3 þ m1=3
ff Þ

2dt0 ð21aÞ

or, changing the variable of integration from t 0 to m:

1 ¼ b0hetB
2

Z mf

m0

ðm1=3 þ m1=3
ff Þ

2

dm=dt0
dm

¼ A
Z mf

m0

ðm1=3 þ 5Þ2

m1=3ð1� �mCb=btÞ dm; ð21bÞ

where dm/dt 0 has been replaced by Eq. (19). c has
been obtained from Eq. (16d) and removed from
the integral because it changes with time t, not with
t 0. Performing the integration yields:

A�1 ¼ 0:75ðm4=3
f � m4=3

0 Þ þ 10ðmf � m0Þ
j

þ37:5ðm2=3
f � m2=3

0 Þ
k.

1� �mCb=btð Þ; ð22Þ

where m0 is the number of fg atoms in the bubbles
nucleated by the ff and mf is their size at the time
of re-solution. �m is the average of m0 and mf. The
dimensionless coefficient A is given by

A ¼ lff B
Dt

: ð23Þ

The number of fg atoms in the bubbles at the time
of re-solution (mf) is determined by solution of
Eq. (22). The initial bubble size m0 is unknown
and must be treated in the model as an adjustable
parameter.

The mean lifetime of the bubble is obtained by
integrating Eq. (19) over 0 < t 0 < s and m0 < m <
mf, then solving for s. The result is
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and re-solution

D.R. Olander, D. Wongsawaeng / Journal of Nuclear Materials 354 (2006) 94–109 103
s ¼
3 m2=3

f � m2=3
0

� �
8pcBD

¼ 3

8pBDbt
m2=3

f � m2=3
0

1� �mCb=bt
: ð24Þ
m0 Rb0 (nm) �m Cb (nm�3) �Rb (nm) s (min)

3 0.29 6 7 · 10�4 0.4 23
10 0.43 18 6 · 10�4 0.5 20
4.1.3.2. Bubble number density. Solution of Eq. (22)
requires specification of Cb, with bhet in Eq. (18)
taken as its average over the lifetime of the bubble:

�bhet ¼
1

s

Z s

0

bhetdt0 ¼ 1

s
: ð25Þ

The last equality follows from Eq. (21a).
The bubble number density is obtained from Eq.

(18) using the average re-solution parameter given
by Eq. (25). With the bubble lifetime from Eq.
(24), the result is the quadratic equation for Cb:

1� �mCb=btð ÞCb ¼
3a

pBDt

� �
m2=3

f � m2=3
0

� �
: ð26Þ
4.1.3.3. Bubble size. The average bubble size is
defined as

�m ¼ 1

s

Z s

0

mdt0 ¼ 1

s

Z mf

m0

m
dm=dt0

dm

¼ 1

s

Z mf

m0

m

4pDcBm1=3
dm ¼ 1

s
1

4pDcB

Z mf

m0

m2=3dm;

where dm/dt 0 is taken from Eq. (19). Inserting Eq.
(24) for s, the above equation yields:

�m ¼ 2

5

m5=3
f � m5=3

0

m2=3
f � m2=3

0

: ð27Þ
4.1.3.4. Solution method. Required property data for
the sample calculation are a = 24, B = 0.2 nm (Eq.
(9)) and D = 7 · 10�3 nm2/s (Ref. [24] at 1000 �C).
Input conditions are: b = 2.5 · 10�9 nm�3 s�1 and
t = 3.1 · 107 s (1 year). The loose parameter is m0,
for which values of 3 and 10 have been chosen (arbi-
trarily). The solution is obtained as follows:

1. guess mf,
2. calculate �m from Eq. (27),
3. solve Eq. (26) for Cb,4
4 Eq. (26) can be simplified to: yð1� yÞ ¼ p �m=bt, where
y ¼ �mCb=bt and p is the right-hand side of Eq. (26). This form
shows that real solutions for y are obtained only for p�m=bt 6 1=4,
at which point y = 1/2. When p�m=bt exceeds 1/4, Cb is calculated
from Eq. (26) with y = 1/2, or Cb = 2p. This solution differs from
Cb ¼ 0:5bt=�m, which follows from the definition of y and setting
its value at 1/2. This discrepancy is probably due to the arbitrary
definition of �m by Eq. (27).
4. solve Eq. (22) for mf,
5. if mf from step 4 is equal to that in step 1, the cal-

culation is complete; otherwise return to step 1,
6. calculate s from Eq. (24).

Table 2 shows the calculated final size of intra-
granular bubbles for two as-nucleated bubble sizes.
Note the very short predicted bubble lifetimes and
the near insensitivity of the bubble size and number
density to the choice of m0. In both cases, more than
90% of the fg produced is in the form of atoms in
the matrix.

4.1.4. Homogeneous nucleation and re-solution

The conservation equations for the all-homoge-
neous process that correspond to Eqs. (18) and
(19) are

dCb

dt
¼ 1

m
� fNkNc2 ð28Þ

and

dm
dt
¼ kDc� bhomm ffi 0: ð29Þ

In contrast to the heterogeneous model, the re-
solution term appears in the single-bubble growth
equation. No allowance has been made for a
complete-bubble destruction mechanism.

Substituting kD of Eq. (15) into Eq. (29), replac-
ing Rb according to Eq. (9) and c by Eq. (16a)
(minus the grain-boundary loss term) yields:

m� ð4pDB=bhomÞðbt � mCbÞm1=3 ¼ 0: ð30Þ
Eq. (28) reduces to

dCb

dt
¼ 1

m
ðzf NDX1=3

fg Þðbt � mCbÞ2: ð31Þ

Inclusion of the factor 1/m in Eqs. (28) and (31) is a
totally arbitrary stratagem for forcing the nucle-
ation process to instantaneously produce a bubble
of m atoms instead of a simple dimer. The 1/m term
could just as justifiably have been omitted with
the argument that all that is needed to produce an
m-atom bubble is a dimer. The analysis of Ref.
[18] utilizes the 1/m term, but the other entries in
Table 1 avoid this difficulty by specifying Cb.



Fig. 3. Intragranular bubble number density and radius for the
homogeneous model.
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Appendix A gives the solution of Eqs. (30) and
(31) for m (or the bubble radius Rb) and Cb (with
no limit to Cb). Eqs. (A.5) and (A.6) describe the
time-dependence of the bubble number density
and radius unimpeded by any other process. How-
ever, as with all nucleation systems, there is a point
at which nucleation ceases and growth takes over.
The criterion for this switch-over is the equality of
the rate of single-fg-atom trapping at existing
bubbles and the rate at which single atoms are
consumed in nucleating new bubbles. The former is

Rate of single-atom trapping per unit volume

¼ kDcCb ¼ 4pDRbðbt � mCbÞCb;

where kD has been expressed by Eq. (15) and c is
given by Eq. (16a) (omitting the grain-boundary
loss term).

Using Eq. (12), single atoms are consumed by
nucleation at a rate given by

mf NkNc2 ¼ mf NzX1=3
fg Dðbt � mCbÞ2:

The inclusion of m in this expression reflects the
basic assumption of the single-size approach,
namely that formation of a dimer is instantaneously
followed by absorption of sufficient fg atoms to give
an m-atom bubble.

When the rates of removal of single atoms by
trapping and by nucleation are equal, the bubble
density, designated as Cb max, is

Cb max ¼
mf NzX1=3

fg

4pBm1=3
ðbt � mCb maxÞ: ð32Þ

The homogeneous model contains two parameters
that are known only to within an order of magni-
tude or more: fN and bhom, with the former the least
well-known. In order to examine the effect of this
parameter, bhom is taken as 10�5 s�1 and fN is given
values of 10�4 and 10�2. The other parameters are:
z = 75; X1=3

fg ¼ 0:31 nm; B = 0.2 nm; D = 7 · 10�3

nm2/s (at 1000 �C) and b = 2.5 · 10�9 nm�3 s�1. m
is given by Eq. (A.2).

Fig. 3 shows plots of the bubble number density
(top) and the bubble radius (bottom) for the two
values of fN. Both the unlimited-growth case and
the limitation imposed by Eq. (32) are shown. The
lowest of the curves for each fN prevails. The most
important feature of these plots is the sensitivity
of Cb, and Rb, to the efficiency of nucleation. The
larger is fN, the larger is the bubble number density,
a result that makes sense physically. The opposite
effect of fN on the bubble radii is the result of the
greater trapping efficiency of a population consist-
ing of a large number of small bubbles than a pop-
ulation for which the reverse is true.

For both fN values, bubble number density is lim-
ited by the switch from nucleation of new bubbles to
the growth of a constant number of old bubbles.
Correspondingly, the bubble sizes are larger than
in the unlimited-growth scenario.

4.1.5. Comparison with experiment

Table 3 presents the results of experimental stud-
ies in which both the size and number density of
intragranular bubbles were measured. Temperature
and burnup are different for these data sets, which
give different values of Rb and Cb. Table 3 also gives
the results computed by the heterogeneous and
homogeneous models described above.

The theoretical bubble number densities for the
heterogeneous model fall roughly in the range of
the experimental values. The observed trends of
decreasing Cb as burnup increases or temperature



Table 3
Comparison of measured intragranular bubble sizes and number densities with those calculated from the single-size heterogeneous model
(with m0 = 6) and the homogeneous model (with fN = 10�4 and bhom = 10�5 s�1)

Refs. T, �C Db (nm2/s) BUa Cb · 104 (nm�3) Rb (nm)

Exp. Het. Hom. Exp. Het. Hom.

[25] 800 2·10�3 23 9 7 9 1.1 0.4 1.0
’’ 800 2·10�3 44 7 7 14 2.0 0.4 1.1
’’ 800 2·10�3 83 4 6 21 2.3 0.4 1.2
[15] 1000 7·10�3 8–9 9 7 3 0.5 0.4 1.0
’’ 1600 6 8–9 4 2 0.03 1.0 1.6 5.1

a In MW d/kg U; converted to time (s) by: BU = 168bt.
b From Ref. [24].
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increases are approximately reproduced by the
model. The calculated values of Rb do not follow
the observed trends with increasing burnup [25].
However, the increase of bubble radius with increas-
ing temperature [15] is, in exaggerated form, pre-
dicted by both models.

Because of the great uncertainty of the parame-
ters of the homogeneous model, the range of predic-
tions is too large to draw meaningful comparison
with experiments. For the selected value of bhom,
and either value of fN, the increase in bubble density
with burnup is opposite the observations. Both
models fail to give the observed increase of bubble
radius with burnup.

4.2. The bubble distribution function

The conceptual difficulties inherent in the single-
size method are largely eliminated by the distribu-
tion-function method. In place of the quantities Cb

and m, the bubble-distribution-function method
seeks to determine Cj, the number of bubbles per
unit volume containing j fission-gas atoms, by one
of two ways. The first technique is based on conser-
vation equations for each bubble size. The difficulty
with this method is the large number of differential
equations that need to be solved simultaneously
and deciding on the maximum value of j, designated
as J. This can be appreciated by considering Eq. (9):
a 2-nm radius bubble contains 1000 fg atoms. The
second method follows the bubble distribution in
size space. This method is roughly equivalent to
slowing-down theory in neutron physics.

4.2.1. The rate-theory approach

A straightforward utilization of this classical
method has been presented by Wood [26]. The con-
servation equations account for bubble nucleation,
re-solution, growth by single-atom diffusion but
not bubble coalescence. Because nucleation pro-
duces dimers, the heterogeneous nucleation process
described by Eq. (10) cannot be employed. Irrespec-
tive of the mechanism of re-solution, nucleation is
always homogeneous and relies upon the rates given
by Eqs. (11) and (12), but does not use Eq. (13).

For the dissolved, single-atom fission gas, the
conservation equation is

dc
dt
¼ b� 2f NkNc2 �

XJ�1

j¼2

kDjcCj þ R1: ð33Þ

The first term on the right-hand side represents fg
production. The second term denotes nucleation of
dimers, the production of which consumes two
single atoms. The third term includes the rates of
removal of single atoms by diffusion to all of the
bubbles in the distribution. The Jth term is excluded
from the summation because there is no J + 1
bubble size to receive the product of single-atom
trapping at bubble size J. The last term is the re-solu-
tion contribution; its form depends on whether the
homogeneous or heterogeneous model is assumed.

The dimer balance is

dC2

dt
¼ fNkNc2 � kD2cC2 � R2: ð34aÞ

For 3 6 j 6 J � 1:

dCj

dt
¼ kDj�1cCj�1 � kDjcCj � Rj ð34bÞ

and

dCJ

dt
¼ kDJ�1cCJ�1 � RJ ; ð34cÞ

where

kN ¼ zX1=3
Xe D ðfrom Eq: ð12ÞÞ and

kDj ¼ 4pDBj1=3 ðfrom Eqs: ð9Þ and ð15ÞÞ: ð35Þ
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The ‘R’ terms represent re-solution rates. They are

R1 ¼
XJ

j¼2

jbhet;jCj Rj ¼ bhet;jCj ð36aÞ

for heterogeneous re-solution.

R1 ¼ 2bhom½2C2� þ
XJ

j¼3

bhom½jCj�

Rj ¼ bhom½ðjþ 1ÞCjþ1� � bhom½jCj�: ð36bÞ

for homogeneous re-solution.
The re-solution probabilities for the heteroge-

neous and homogeneous mechanisms are

bhet;j ¼ 2plff
_F B2ðj1=3 þ j1=3

ff Þ
2 and

bhom ¼ user – specified: ð37Þ

The conservation equations must satisfy the overall
fg balance:

b ¼ dc
dt
þ
XJ

j¼2

j
dCj

dt
or bt ¼ cþ

XJ

j¼2

jCj: ð38Þ

The close similarity of the last form in the above
equation with Eq. (16a) (minus the grain-boundary
loss term) is noteworthy.

Wood [26] provides the following ‘data’ for his
computations using Eqs. (33)–(38): fN = 10�4;
b = 5 · 10�3 s�1 (both heterogeneous and homoge-
neous variants); b = 2 · 10�8 nm�3 s�1; D = 3.3 ·
102 nm2/s.

Wood does not account for the bubble-size
dependence of heterogeneous re-solution (i.e., the
j1/3 term in the parentheses in Eq. (37) is neglected).
The fg diffusivity given above is six orders of magni-
tude greater than that obtained from Ref. [24] at
1000 �C. Disregarding these problems, Fig. 4 shows
the shape of the bubble distribution function after
Fig. 4. Bubble distribution function from Wood’s model [26].
4 h of irradiation. At this time, 60% of the gas is still
in solution, but this percentage is rapidly decreasing
(Fig. 2 of Ref. [26]), despite the large re-solution
parameter. However, the extraordinarily-large fg
diffusion coefficient apparently more than compen-
sates for the large value of b by greatly increasing
the nucleation and trapping rates.

Fig. 4 shows a preponderance of small bubbles.
The quantity of 10-atom bubbles is �1/3 that of
3-atom bubbles; 100-atom bubbles are two orders
of magnitude less numerous than 3-atom bubbles.
The radius of a 3-atom bubble is 0.3 nm (Eq. (9)),
which is about the minimum size that has been
observed by TEM.

4.2.2. The size-space approach
Fig. 5 shows the diagram that is the basis of the

size-space approach for determining the bubble
distribution function. The method follows from
the treatment of void nucleation in irradiated met-
als [27]. In Fig. 5, nucleation and re-solution
are assumed (for illustrating the method) to be
heterogeneous. The rate per unit volume at which
heterogeneous nucleation produces bubbles of
arbitrarily-chosen size j0 is given by Eq. (10) and
the rate of re-solution by the second formula in
Eq. (36a). The diffusional fluxes that cause upward
movement in bubble-size space are

qj ¼ 4pDBcj1=3Cj: ð39Þ

The bubble distribution function is assumed to be
quasi-stationary, so dCj/dt = 0 and the conserva-
tion equation for the jth size bubble is

qj�1 � qj � Rhet;j ¼ 0: ð40Þ

This is nothing more than the steady-state version
of Eq. (34). The size-space method assumes that
the bubble-size distribution changes slowly as the
single-atom concentration c increases with time.

With the trapping rate expressed by Eq. (39) and
the re-solution rate by Eqs. (36a), Eq. (39) yields the
recursion formula:

Cj ¼
ðj� 1Þ1=3

j1=3 þ P ðj1=3 þ j1=3
ff Þ

2
Cj�1; ð41Þ

where jff is the same as mff in Eq. (20) and the dimen-
sionless constant P is given by

P ¼ lff
_F B

2Dc
: ð42Þ

The value of j1=3
ff is 5.



Fig. 5. Processes in bubble-size space.
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For heterogeneous nucleation of a bubbles con-
taining j0 fg atoms per ff, the balance on the Cj0

bin is

2a _F ¼ qj0
þ Rhet

j0
;

using the appropriate rate expressions on the right-
hand side, this equation yields:

Cj0 ¼
CN

j1=3
0 þ P ðj1=3

0 þ j1=3
ff Þ

2
; ð43Þ
where the numerator is

CN ¼
a _F

2pDBc
: ð44Þ

Fig. 5 indicates that the movement upwards in
size space ceases at j = J. This means that the Jth
bin provides no flux to the J + 1 bin. The maximum
bubble size is that of Eq. (22), with the result that J

is fixed by solution of the equation:

P�1¼ 0:75ðJ 4=3� j4=3
0 Þþ10ðJ � j0Þþ37:5ðJ 2=3� j2=3

0 Þ:
ð45Þ

The following fixed parameters are chosen for illus-
trating the results of this method:

a = 24 bubbles containing j0 fission-gas atoms
nucleated per fission fragment

_F ¼ 10�8 nm�3 s�1; D ¼ 7� 10�3 nm2=s;

B ¼ 0:2 nm ðEq: ð9ÞÞ; lff ¼ 6� 103 nm

from which the parameters are: P = 8.6 · 10�4/c
and from Eq. (44), CN = 2.7 · 10�5/c.

In these two parameters, c is given by Eq. (38).
With j0 and bt specified, the solution proceeds as
follows:

1. guess c,
2. calculate P and CN,
3. solve Eq. (45) for J,
4. calculate Cj0 from Eq. (43),
5. calculate Cj for j0 + 1 6 j 6 J,
6. calculate sum ¼

PJ
j¼j0

jCj,
7. calculate c = bt � sum,
8. if c from step 7 is within 1% of the initial guess,

exit; if not return to step 1.

Fig. 6 depicts the bubble distribution functions
for two values of j0 (3 and 10) and four values of
bt (0.05, 0.10, 0.15, and 0.20 nm�3).

The crosses terminating each curve indicate the
maximum-size bubble (i.e., J). For an embryo bub-
ble size of 3 (upper left hand curves in Fig. 6), the
average near the peak is �7 · 10�4 nm�3, in reason-
able agreement with the data in Table 3. The
average number of fg atoms per bubble is approxi-
mately 8, for which Eq. (9) gives a radius of
�0.4 nm. This size is a factor of 2–4 times smaller
than those shown in Table 3.

For the starting size of 10 fg atoms, the curves in
Fig. 6 are essentially independent of bt (i.e., bur-
nup), excepting the maximum size attained by
the bubbles before they are re-solved by fission



Fig. 6. Bubble distribution function for embryo containing 3 and
10 fg atoms.
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fragments. The average bubble radius characteriz-
ing the size range in the figure is �0.5 nm for the
highest burnup. This value is somewhat closer to
the data in Table 3 than the average radius for the
j0 = 3 case, but the bubble density from the model
for j0 = 10 is an order of magnitude smaller than
those observed by TEM.

For both initial bubble sizes, the bubble density is
independent of burnup (bt). The data in Table 3
show a decrease with burnup. The average bubble
sizes in Fig. 6, defined by: �j ¼

P
jCj=

P
Cj where

the sums run from j0 to J, are increasing functions
of bt. This behavior is also seen in the experimental
results in Table 3.

The time scales in Wood’s rate-theory model and
the size-space model are very different: 4 h in the for-
mer and a maximum of 2 years in the latter. In addi-
tion, the distribution from Wood’s model exhibits a
rapid decrease of bubble concentration with bubble
size (Fig. 4), whereas, as noted above, the size-space
model predicts just the opposite. The rate-theory
analysis predicts a decrease of the percentage of fg
in solution from 100% at the start of irradiation to
10% after 6 days. The size-space model predicts
retention of 97% of the fg in solution for all burnups.
It is impossible to tell if these discrepancies are due
to the differences in the parameters used in the two
models or to physical representation differences
(e.g, homogeneous vs heterogeneous nucleation, full
time-dependence vs quasi-stationary).

5. Summary

Two distinct mechanisms of re-solution of intra-
granular fg bubbles are identified. In the heteroge-
neous process, all bubbles touched by a fission
fragment are re-solved. In the homogeneous pro-
cess, single fg atoms are individually returned to
the UO2 lattice by atomic collisions with either
fission fragments or the U recoils generated by ffs
slowing down in the solid.

An analogous division into heterogeneous and
homogeneous mechanisms applies to bubble nucle-
ation. Combining nucleation and re-solution pro-
duces models of the bubble population that can be
divided into ‘single-size’ and ‘distribution function’
versions. In the former, the intragranular bubble
population is described by a single bubble size and
a single bubble number density. These are deter-
mined by quasi-stationary approximations to the
conservation equations. The less-explored distribu-
tion function method provides the number of intra-
granular bubbles of each size, but appears to be very
sensitive to modeling assumptions.

The all-heterogeneous model best fits available
TEM data for intragranular bubbles. This simple
theory predicts the observed number density of
intragranular bubbles with reasonable accuracy,
but fails by a factor of 2–4 in reproducing their size.
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Appendix A

Defining:

f ¼ GðbtÞ and u ¼ GðmCbÞ where

G2 ¼ zf NDX1=3
fg =b: ðA:1Þ

Eqs. (30) and (31) become:

m2=3 � Hðf� uÞ ¼ 0 ðA:2Þ

and

du
df
¼ ðf� uÞ2; ðA:3Þ

where

H ¼ 4pDB
Gbhom

¼ 4pB
ffiffiffiffiffiffiffi
bD
p

bhom

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zf NX1=3

Xe

q : ðA:4Þ

where D is taken from Ref. [24].
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Including m in the time-derivative of Cb in the def-
inition of u is based on the assumption of a quasi-
steady state balance on m (see Eq. (29)).

With the initial condition u(0) = 0, the solution
of Eq. (A.3) is

u ¼ f� e2f � 1

e2f þ 1
; ðA:5Þ

which can readily be converted to the original vari-
ables t and Cb by using Eq. (A.1) with m from Eq.
(A.2). The bubble radius is obtained from Eq.
(A.2) with m eliminated using Eq. (9):

Rb ¼ 0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hðf� uÞ

p
: ðA:6Þ
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